Anticancer activity of melatonin analogues

Giuliana Gatti1, Valeria Lucini2, Silvana Dugnani1, Angela Calastretti1, Gilberto Spadoni2, Francesco Scaglione1, Gianfranco Canti1, Annamaria Bevilacqua2

1Università degli Studi di Milano, Milan, Italy
2Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy

Introduction: Melatonin plays fundamental roles in diverse physiological functions ranging from the regulation of circadian rhythms to tumor inhibition, owing to its antioxidant, immunomodulatory and anti-aging properties [1-3]. The therapeutic potential of melatonin and its analogues [4,5] prompted us to investigate the in vitro and in vivo antitumor activity of new melatonin derivatives on melanoma and breast cancer cells, and explore the underlying molecular mechanisms.

Materials and methods: New indole melatonin analogues were synthetized and tested for their ability to inhibit proliferation and induce apoptosis in DX3 melanoma cells and in MCF-7 and MDA-MB231 breast cancer cells by viability and apoptosis assays. The oncostatic effect of melatonin analogues was also measured on a human melanoma xenograft mouse model. The changes in the expression levels of different proteins in cancer cell lines during treatment with melatonin analogues were investigated by Western blot analysis.

Results: The experiments revealed that the new melatonin analogues inhibited the growth of DX3 melanoma cells in a dose- and time-dependent manner. In addition, the study demonstrated that low concentrations (0.1 mM) of the melatonin analogue UCM 1037 exhibited antiproliferative and cytotoxic effects also in MCF-7 and MDA-MB231 breast cancer cells. The suppression of DX3 tumor growth by the melatonin analogues was further demonstrated in vivo in a xenograft mice model. Caspase 3 resulted to be involved in the pro-apoptotic mechanism induced by UCM 1037 in DX3 and MDA-MB231 cells. A decrease in the activation of both Akt and MAPK pathways was observed in breast cancer cells following UCM 1037 treatment.

Conclusions: This study describes melatonin derivatives showing promising antiproliferative and cytotoxic activity in melanoma and breast cancer cells.

References and acknowledgements:

A.B. is supported by a grant from Fondazione Cariplo-Regione Lombardia.

Keywords: Melatonin, melatonin receptors, melatonin analogues, melanoma, breast cancer